

Current Transducer LT 1005-T/SP3

For the electronic measurement of currents: DC, AC, pulsed..., with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

$I_{PN} = 1000 A$

Electrical data

_{PN} _P	Primary nominal r.m.s. current Primary current, measuring range		1000 0 ± 1800		A A	
$\mathbf{R}_{_{\mathrm{M}}}$	Measuring resistance			$\mathbf{R}_{M\;min}$	$\mathbf{R}_{_{\mathrm{M}\mathrm{max}}}$	
	with ± 15 V	@ ± 100	0 A _{max}	0	22	Ω
		@ ± 180	0 A _{max}	0	5	Ω
I_{SN}	Secondary nominal r.m.s. current		333		mA	
K _N	Conversion ratio		1:3000			
V _c	Supply voltage (± 5 %)		± 15		V	
I _c	Current consumption		25 + I _s		mA	
$\dot{\mathbf{V}}_{d}$	R.m.s. voltage for AC isolation test, 50 Hz, 1 mn		6 ¹⁾		kV	
V _b	R.m.s. rated voltage 2),	;	safe separation	1750		V
=			basic isolation	3500		V

Accuracy - Dynamic performance data

$egin{array}{c} \mathbf{x}_{\scriptscriptstyle G} \ \mathbf{e}_{\scriptscriptstyle L} \end{array}$	Overall accuracy @ $\mathbf{I}_{PN,}$ $\mathbf{T}_{A} = 25^{\circ}\mathrm{C}$ Linearity error		± 0.4 < 0.1		% %
I _o I _{oT} t _r di/dt f	Offset current @ $\mathbf{I}_{P} = 0$, $\mathbf{T}_{A} = 25^{\circ}\text{C}$ Thermal drift of \mathbf{I}_{O} Response time ³⁾ @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (- 1 dB)	- 25°C + 70°C	Typ ± 0.3 < 1 > 50 DC 1	Max ±0.7 ±0.7	m A m A µs A/µs kHz

General data

т	Ambient operating temperature	- 25 + 70	°C
T _c	Ambient storage temperature	- 40 + 85	°C
\mathbf{R}_{s}^{s}	Secondary coil resistance @ T _A = 70°C	17	Ω
m	Mass	1.1	kg
	Standards	EN 50155: 199	95

Notes: 1) Between primary and secondary + shield

- ²⁾ Pollution class 2. With a non insulated primary bar which fills the through-hole.
- 3) With a di/dt of 100 A/µs.

Features

- Closed loop (compensated) current transducer using the Hall effect
- Insulated plastic case recognized according to UL 94-V0.

Special features

- $I_{D} = 0..1800 A$
- $\mathbf{K}_{N} = 1:3000$
- $V_c = \pm 15 (\pm 5 \%) V$
- $T_{\Lambda} = -25^{\circ}C ... + 70^{\circ}C$
- Connection to secondary circuit on M4 threaded studs
- Potted
- Railway equipment.

Advantages

- Excellent accuracy
- Very good linearity
- Low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- · Current overload capability.

Applications

- AC variable speed drives and servo motor drives
- · Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies (SMPS)
- Power supplies for welding applications.

Dimensions LT 1005-T/SP3 (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance ± 0.5 mm

• Transducer fastening 4 holes Ø 6.5 mm

4 M6 steel screws

Recommended fastening torque 5 Nm or 3.7 Lb. - Ft.

Or

Connection of the primary
 Connection of secondary
 2 holes Ø 13 mm
 M4 threaded studs

Recommended fastening torque 1.2 Nm or .88 Lb-Ft

Remarks

- I_s is positive when I_p flows in the direction of the arrow.
- Temperature of the primary conductor should not exceed 100°C.